Водородный генератор своими руками: принцип работы устройства, схемы и описание процесса сборки

Водородный генератор

Электролизер – один из самых распространенных водородных генераторов.

Описание и принцип работы

В общем случае водородный генератор представляет собой набор металлических пластин, погруженных в дистиллированную воду. Конструкция заключена в герметичный корпус с клеммами для подключения источника электропитания и штуцером для вывода газа.

Теоретически работу водородного генератора можно представить следующим образом: между разнополярными пластинами (анод, катод), погруженными в дистиллированную воду, проходит электрический ток. При этом вода расщепляется на кислород и водород. Чем больше площадь пластин, тем больший ток проходит по воде и тем большее количество газов выделяется. Пластины подключаются поочередно (+-+- и т. д).

Область применения

В связи с тем, что сам процесс электролиза связан с использованием большого количества электроэнергии, промышленное применение электролизеров существенно ограничено. Экономически выгоднее использовать для получения водорода химические способы.

В настоящее время водородные генераторы применяют для:

  • газосварки и газорезки водородом в условиях ювелирных мастерских;
  • снижения токсичности двигателей внутреннего сгорания (ДВС) и повышения их КПД (коэффициент полезного действия);
  • повышения КПД и снижению токсичности жидкотопливных котлов.

Устройство

Немногочисленные промышленные электролизеры, которые используют для получения водорода и кислорода, изготавливают в виде стационарных установок. Электроды в них включаются биполярно, причем их количество зависит от способа включения в сеть (трансформаторное или бестрансформаторное).

Конструкции малогабаритных водородных генераторов, которые выпускаются как отечественными, так и зарубежными компаниями и используются для повышения КПД ДВС и других целей, отличаются большим разнообразием. Кроме того существует огромное количество конструкций, изготовленных своими руками. В сети Интернет о них можно найти достаточно много информации.

Учитывая, что конструкция электролизера отличается простотой и его нетрудно изготовить собственноручно, рассмотрим конструкции нескольких подобных устройств:

  • Простейший электролизер.
  • Водородный генератор для автомобиля.
  • Немного о доверчивости и наивности

    Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

    Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

    Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

    Отечественный опыт строительства водородных генераторов в домашних условиях ↑

    А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.

    Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора.  Ничего сложного.

    В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.

    Меры безопасности

    Электролизерные установки представляют собой устройства повышенной опасности. Поэтому в процессе их изготовления, монтажа и эксплуатации необходимо строго соблюдать как общие, так и специальные меры безопасности.

    Среди специальных требований наиболее важными являются:

  • Не допускается образование взрывоопасных концентраций смеси кислорода с водородом или воздухом.
  • Не допускается работа водородных генераторов, если в его смотровом окне не виден уровень жидкости.
  • При выполнении ремонтных работ необходимо убедиться в полном отсутствии водорода в конечной точке системы.
  • Возле электролизеров не разрешается пользоваться открытым огнем, электрическими нагревательными приборами и переносными лампами напряжением более 12 В.
  • При работе с электролитом необходимо пользоваться спецодеждой, перчатками и очками.
  • Специалисты не рекомендуют самостоятельно изготавливать автомобильные водородные генераторы. Мотивируется это тем, что автомобильный электролизер представляет собой достаточно сложное и небезопасное устройство, при изготовлении которого необходимо использовать специальные материалы и реагенты.
  • При самостоятельной установке в автомобиль электролизера, изготовленного своими руками, необходимо исключить возможность попадания газа в камеру сгорания топливо-воздушной смеси при заглушенном двигателе. При выключении двигателя в обязательном порядке водородный генератор должен автоматически отключаться от сети электропитания автомобиля.
  • При самостоятельном изготовлении автомобильного электролизера не забудьте оснастить его специальным водяным клапаном – барботером. Его использование позволит значительно повысить безопасность эксплуатации автомобиля.
  • Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.

    В нынешнее время отопление водородом своими руками – вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.

    Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.

    При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.

    Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».

    Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.

    Критика водородного транспорта

    • Смесь водорода с воздухом взрывоопасна. Водород более опасен, чем бензин, так как горит в смеси с воздухом в более широком диапазоне концентраций. Бензин не горит при лямбда менее 0,5 и более 2, водород при таких соотношениях горит великолепно. Но водород, хранящийся в баках при высоком давлении, в случае пробоя бака очень быстро испаряется. Для транспорта разрабатываются специальные безопасные системы хранения водорода — баки с многослойными стенками, из специальных материалов и т. д. (К примеру, бак из нанотрубок, заполненных водородом.) Но всё равно это в целом удорожает весь цикл эксплуатации транспортного средства, ложась расходами на плечи потребителя.
    • Водородная силовая установка на базе традиционного ДВС значительно сложнее и дороже в обслуживании, чем обычный ДВС (особенно дизельный). По данным Массачусетского технологического института, эксплуатация водородного автомобиля на данном этапе развития водородных технологий обходится в сто раз дороже, чем бензинового.
    • Пока нет достаточного опыта эксплуатации водородного транспорта.
    • Нет возможности быстрой дозаправки в пути из канистры или от другого автомобиля.
    • Для заправки водородом требуется построить сеть заправочных станций. Для заправочных станций, заправляющих автомобили жидким водородом, стоимость оборудования выше, чем для заправочных станций, заправляющих автомобили жидким топливом (бензином, этанолом и дизельным топливом). (Согласно GM, строительство 12 тысяч водородных заправочных станций в 2005 году оценивалось в $12 млрд, то есть $1 млн на одну заправочную станцию, в то время как комплект оборудования для бензиновых заправочных станций стоит от $40 тыс., в среднем $100-200 тыс.) .
    • Цена 8 евро за литр (500 руб)..
    • Летучесть водорода самая высокая среди газов. Таким образом, водород трудно сохранить в жидком виде, это затрудняет хранение водорода, транспортировку и использование в баке, так как топливо полностью испарится из бака за короткое время. За девять дней испаряется полбака топлива BMW Hydrogen
    • В настоящий момент водород производится путём расхода значительного количества электроэнергии

    Критерии выбора водородного генератора

    Более безопасными характеристиками обладает водородное оборудование, изготовленное в промышленных условиях. Процесс производства учитывает показатели тестовых запусков образцов, ряда экспериментов и других научно-исследовательских мероприятий. Тогда как в домашних условиях выполняется лишь механическая сборка. Поэтому специалисты настоятельно рекомендуют приобретать котлы в специализированных магазинах, где покупка защищена гарантиями производителя.

    • мощность;

    • потребление электричества;

    • количество контуров;

    • особенности монтажа и эксплуатации.

    Кроме того, следует учесть репутацию производителя. Для этого рекомендуется предварительно ознакомиться с отзывами покупателей и отследить рейтинг самых популярных компаний. Перед приобретением нужно осмотреть корпус и доступные для обзора элементы на предмет целостности. Если производитель гарантий не даёт, от покупки такой модели стоит отказаться.

    Технические характеристики

    Чистота водорода в пересчете на сухой газ, % об 99,9999
    Концентрация водяных паров при 20OС и 1атм, не более, ppm, 5
    Суммарная производительность по водороду, приведенная к нормальным условиям, не менее, л/ч, 12
    Диапазон задаваемого выходного давления водорода, ати, от 3,0 до 6,1
    Стабильность выходного давления водорода, не хуже, ати, ±0,02
    Время установления рабочего режима, при заглушенном выходе не более, мин, 30
    Объем заливаемой дистиллированной воды, л, 1,0
    Расход дистиллированной воды, не более, л/час, 0,02
    Потребление воды, г/л водорода, 1,6
    Средний ресурс сменного картриджа деионизационного фильтра (при максимальной производительности и односменной работе), лет, не менее, 1
    Средняя потребляемая мощность:
    в стационарном режиме, не более, ВА, 180
    максимальная (при запуске), не более, ВА, 220
    Габаритные размеры генератора, (ширина x глубина x высота), не более, мм, 230х470х450
    Масса генератора. не более, кг, 16
    Рабочие условия:
    температура окружающего воздуха, °С, от +10 до +35
    питание от однофазной сети переменного тока напряжением, В, 220 (+10 –15)%
    и частотой, Гц, 50 +1
    Генератор по электробезопасности соответствует требованиямs класса 1, тип Н по ГОСТ 12.2.025-76

    Дополнительные технические характеристики

    Контроль качества воды, заливаемой в питающий бак +
    Встроенная система водоподготовки (контроль и автоматическая очистка воды, питающей электролизный модуль) +
    Встроенная система автоматической регенерации фильтров тонкой очистки водорода +
    Контроль влажности производимого водорода +
    Контроль разгерметизации +
    Возможность включения режима «СДУВКА» +
    Отображение информации о работе, отдельных параметрах, неисправностях на дисплее +

    Немного истории

    Принцип действия водородной энергии был отмечен еще в древние времена. Известный врачеватель Парацельс при проведении своих научных экспериментов заметил, что при соединении некоторых элементов образуются пузырьки, которые он в то время принял за воздух. Позже выяснилось, что это был водород, представляющий собой газ без цвета, при определенных условиях проявляющий взрывные свойства.

    В настоящее время водород научились использовать в разных целях, в том числе – для отопления жилого дома или любых других сооружений. Эти технологии активно развивают и внедряют во множестве отраслей. Являясь новшеством на рынке научных разработок, обогрев водородом уже заинтересовал многих потребителей и продолжает набирать популярность среди широких масс.

    Доказано, что водород считается не только довольно распространенным, но и легкодоступным веществом. Единственная сложность – его приходится добывать из химических соединений, чаще всего – воды.

    Кислородно водородная горелка своими руками

    no images were found

    Так вот, это то же самое, только мощнее на два-три порядка. Эта хренотень даёт мощный, чрезвычайно горячий язык пламени тупо из воды со щёлочью. Никаких баллонов с газами, никаких редукторов, заправок и прочей мути — только подай напряжение. А если надуть ей шарик, и отпустить его с горящей ниткой…

    Что нужно для получения более-менее мощного потока газа? Правильно, большая площадь электродов, причём объём газа в секунду ей прямо пропорционален. Не буду вдаваться в расчёты, тем более что сам я их не проводил, просто сообщу оптимальные параметры. Суммарная площадь электродов для достойного внимания потока газа должна быть не менее 1000 см^2 (суммарно по аноду и катоду), желательно — от 2000 см^2. Плотность тока должна быть порядка 0.08-0.15А/см^2 (8-15А/дм^2): при большем токе будет иметь место перегрев электролита и закипание — то есть, пена, тысячи её; при меньшем — теряем в газовыделении. Падение на одной паре электродов для такого тока получается 2-3 вольта, в зависимости от концентрации электролита (я взял 10%, это соответствует примерно 2.2-2.3 вольта падения). При таких обстоятельствах качать две огромных пластины сотнями ампер тока при двух вольтах представляется не очень разумным решением. Гораздо лучше соединить несколько ячеек последовательно: тогда мы сможем увеличить рабочее напряжение и площадь электродов во много раз при том же токе. А теперь осталось только сообразить, что одна пластина электрода может быть с одной стороны катодом одной ячейки, а с другой — анодом другой. Короче, просто набираем бигмак из чередующихся кольцеобразными прокладками пластин. Больше пластин — больше напряжение при том же токе; больше площадь одной каждой пластины — больший ток при том же напряжении. Увеличение числа пластин увеличивает суммарное падение на них напряжения. На схеме всё понятно видно.

    В каждой пластине необходимо проделать отверстия снизу и сверху на расстояниях чуть меньше диаметра прокладки друг от друга (но не менее 0.5-1 см от края прокладки) — для газообмена и для распределения электролита по ячейкам. Хватит где-то 5 мм сверла.

    Щёлочь. Подойдёт NaOH или KOH, желательно чистый, а не технический. Начинать с концентрации 10% по массе (в дистиллированной воде), дальше экспериментировать. Выше концентрация — выше ток, но больше пены.

    Стягивающие пластины. Требуется нечто очень слабо гнущееся и жёсткое. Идеально и классика постройки — толстое, двухсантиметровое оргстекло. В нём же можно проделать выводы и резьбу под газ и доп. топливный бачок. У меня не было оргстекла, я просто впаял медные трубки в последнюю нержавеющую пластину, а для стяжек использовал 27 мм фанеру.

    Перво-наперво следует сделать водный затвор. Водород-кислородная смесь, HHO, невероятно злая штуковина. Она с лёгкостью детонирует, да и сгорает весьма резво, не требуя притом никаких окислителей (кислород-то есть).

    Технические характеристики генераторов водорода серии Н

    Модели серии H

    H2m

    H4m

    H6m

    Производительность по водороду

    2 м3/час 4,31 кг/24 часа

    4 м3/час 8,63 кг/24 часа

    6 м3/час 12,94 кг/24 часа

    Давление водорода на выходе — номинальное

    15 барОпционально 30 бар

    Потребляемая мощность на единицу объема произведенного водорода

    7,3 кВт ч/ м3

    7,0 кВт ч/ м3

    6,8 кВт ч/ м3

    Чистота (концентрация примесей)

    99,9995% Вода< 5 ppm, (температура насыщения -65º C), N2 < 2 ppm, O2 < 1 ppm, все остальное ниже предела обнаружения

    Диапазон регулировки производительности

    От 0 до 100% от номинального значения

    Возможность модернизации

    Модернизируемый до 6 м3

    Модернизируемый до 6 м3

    Нет

    Требования к деионизированной воде

    Расход при максимальной производительности

    1,83 л/час

    3.66 л/час

    5.50 л/час

    Температура

    от 5 ºС до 50 ºС

    Давление

    От 1,5 до 4 бар

    Качество подводимой воды

    Минимальные требования: деионизированная вода ASTM тип II, < 1 мкСм/см Предпочтительно: деионизированная вода ASTM тип I, < 0,1 мкСм/см

    Тепловая нагрузка и требования к охлаждению

    Охлаждение

    Жидкостное охлаждение

    Тепловая нагрузка от системы

    макс. 8.1 кВт

    макс. 16.1 кВт

    макс. 23.7 кВт

    Охлаждающий агент

    от 15 до 45 л/мин

    от 15 до 68 л/мин

    от 15 до 86 л/мин

    от 0 до 50 % гликоля, не загрязняющийся от 1,4 до 6,9 бар изб. 5 ºС до 35 ºС

    Требования к электричеству

    Рекомендуемое значение на предохранителе

    22 кВА

    40 кВА

    58 кВА

    Электропитание

    От 380 до 480 В (переменный ток), трехфазный, 50 или 60 Гц

    Соединения

    Выход производимого водорода

    ¼ » CPI прессуемый зажим для труб, нержавеющая сталь

    Н2/Н2О вентиляционный порт

    1/2» стандартная внутренняя трубная резьба, нержавеющая сталь

    Вход для деионизированной воды

    1/4» стандартная внутренняя трубная резьба, нержавеющая сталь

    Вход для калибровочного газа

    1/8» стандартная внутренняя трубная резьба, латунь

    Вход охлаждающего агента

    1» стандартная внутренняя трубная резьба, латунь

    Выход охлаждающего агента

    1» стандартная внутренняя трубная резьба, латунь

    Слив

    3/8» стандартная внутренняя трубная резьба, латунь

    Электричество

    Подсоединено к встроенному прерывателю цепи

    Цифровой выход

    Ethernet

    Системы управления

    Стандартные характеристики

    Полностью автоматизированное управление, кнопка запуск/выкл, E-stop. Встроенная система детекции утечки водорода. Самодиагностика ошибок и падения давления в системе.

    Удаленный аварийный терминал

    Реле тип С (5А, 250 В, 150 Вт макс. выключение)

    Удаленное выключение

    через предохранительный контур

    Внешние характеристики

    Размеры Д х Ш х В

    180 x 80 x 190 см Примечание: необходимо прибавлять 8 см к высоте для установки подъемных кронштейнов

    Вес (генератор / в транспортируемой упаковке )

    700 кг / 807 кг

    727 / 858 кг

    773 кг / 908 кг

    Класс

    IP43 для жидкостной секции; модернизируемо до IP56 IP66 для блока электроники

    Требования к условиям окружающей среды

    Стандартное размещение

    Внутри помещения, уровень ± 1º, от 0 до 90 % влажности без конденсата, безопасная/не классифицированная окружающая среда

    Температура при хранении/перевозке

    От 5°C до 60°C

    Диапазон температур окружающей среды

    От 5°C до 50°C

    Диапазон высот — высота над уровнем моря до

    2400 м

    Вентиляция

    Надлежащая вентиляция должна быть обеспечена из безопасной окружающей среды в соответствии с IEC60079-10, Zone 2 NE

    Меры безопасности и нормативные регламенты

    Вентиляция внутреннего пространства из окружающей среды

    NFPA 69 и EN 1127-1, пункт 6.2. Вентилятор нагнетает поток свежего воздуха со скоростью до 28 м3/мин

    Шум дБ на расстоянии 1 метр

    < 83

    Сертификаты

    cTUVus (UL и эквивалент CSA), CE (PED, ATEX, LVD, Mach. Dir. EMC), NYFD

    Опции

    Proton Onsite предлагает широкий диапазон опций для конфигурирования систем, чтобы они наилучшим способом соответствовали Вашим требованиям. Для ознакомления со списком опций, доступных в настоящий момент, и обсуждения наиболее подходящего для ваших задач варианта, свяжитесь с местным представителем.

    Водородный генератор для автомобиля своими руками (чертежи)

    Обогащение топливно-воздушной смеси водородом способствует снижению расхода горючего. По свидетельству некоторых автолюбителей, экономия топлива может составить до 30%.

    За основу автомобильного генератора водорода принято устройство, которое было описано в предыдущем разделе. Разница состоит в отсутствии гидрозатвора (полученный водород сразу направляется во впускной коллектор) и наличии блока управления. Последний будет регулировать силу тока между электродами в зависимости от числа оборотов двигателя.

    Самостоятельное изготовление такого блока под силу только тем, кто свободно ориентируется в радиоэлектронике, поэтому мы рекомендуем воспользоваться покупным вариантом. Тем более что блоки заводского изготовления всю работу по регулированию производительности водородного генератора берут на себя, не требуя участия пользователя.

    Элементы системы для автомобильного генератора

    Все что будет нужно – в самый первый раз вручную подобрать значение силы тока (оптимальное) для режимов «холостой ход» и «максимальная нагрузка», а далее блок управления будет сам варьировать производительность установки в заданных пределах.

    Необходимо очень тщательно уплотнять все соединения: утечка водорода может привести к пожару.

    Герметичность конструкции лучше всего проверять мыльной пеной: утечки, если таковые имеются, проявят себя постоянно появляющимися и растущими пузырями.

    Корпус автомобильного генератора водорода можно изготовить из водопроводного фильтра, который является достаточно прочным. Объем его невелик и чтобы установку не приходилось слишком часто заправлять, ее можно дополнительно оборудовать баком для хранения запаса раствора. К рабочей емкости он присоединяется двумя трубками.

    Способы получения водорода

    Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.

    Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:

    • электролиз воды;
    • метод концентрирования;
    • низкотемпературная конденсация;
    • адсорбция.

    Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.

    Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.

    Термическая диссоциация

    Электролизный метод

    Наиболее простым и популярным методом выделения водорода считается электролиз воды. Он допускает получение практически чистого водорода. Другими преимуществами этого способа считаются:

    Принцип действия электролизного генератора водорода

    • доступность сырья;
    • получение элемента под давлением;
    • возможность автоматизации процесса из-за отсутствия движущихся частей.

    Процедура расщепления жидкости электролизом обратен горению водорода. Его суть в том, что под воздействием постоянного тока на электродах, опущенных в водный раствор электролита, выделяются кислород и водород.

    Дополнительным преимуществом считается получение побочных продуктов, обладающих промышленной ценностью. Так, кислород в большом объеме необходим для катализации технологических процессов в энергетике, очистки почвы и водоемов, утилизации бытовых отходов. Тяжелая вода, получаемая при электролизе, в энергетике используется в атомных реакторах.

    Получение водорода концентрированием

    Этот способ основан на выделении элемента из содержащих его газовых смесей. Так, наибольшая часть производимого в промышленных объемах вещества, извлекается с помощью паровой конверсии метана. Добытый в этом процессе, водород используют в энергетике, в нефтеочистительной, ракетостроительной индустрии, а также для производства азотных удобрений. Процесс получения H2 осуществляют разными способами:

    • короткоцикловым;
    • криогенным;
    • мембранным.

    Последний способ считается наиболее эффективным и менее затратным.

    Конденсация под действием низких температур

    Эта методика получения H2 заключается в сильном охлаждении газовых соединений под давлением. В результате они трансформируются в двухфазную систему, которая впоследствии разделяется сепаратором на жидкое составляющее и газ. Для охлаждения применяют жидкие среды:

    • воду;
    • сжиженный этан или пропан;
    • жидкий аммиак.

    Эта процедура не так проста, как кажется. Чисто разделить углеводородные газы за один раз не получится. Часть компонентов уйдет с газом, забираемым из сепарационного отсека, что не экономично. Решить проблему можно глубоким охлаждением сырья перед сепарацией. Но это требует больших энергозатрат.

    В современных системах низкотемпературных конденсаторов дополнительно предусмотрены колонны деметанизации либо деэтанизации. Газовую фазу выводят с последней сепарационной ступени, а жидкость направляется в ректификационную колонну с потоком сырого газа после теплообмена.

    Способ адсорбции

    Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.

    Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов H2 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.

    Оцените статью
    Добавить комментарий