Аэродинамический расчет систем вентиляции

Комплектующие

Текстильные воздуховоды

Текстильные воздуховоды (см. рисунок 6) отличаются малой массой и малыми габаритами при транспортировке. Действительно, вес ткани существенно ниже веса металла, а в сложенном виде они представляют собой обычную стопку ткани, в то время как единственный способ оптимизировать перевозку оцинкованных воздуховодов — вложить воздуховод меньшего сечения в воздуховод большего сечения.

Аэродинамический расчет систем вентиляции

Рисунок 6. Текстильные воздуховоды.

Текстильные воздуховоды выполняются с микроперфорацией, что позволяет равномерно с малой скоростью подавать воздух в помещение. В свою очередь это ликвидирует проблему задувания холодным воздухом какого-либо сотрудника в офисе, а также позволяет сэкономить на адаптерах, решётках и ответвлениях. Текстильные воздуховоды могут быть окрашены в различные цвета, включая текстурную окраску, что позволяет им быть частью интерьера помещения. Также к преимуществам текстильных воздуховодов относят простоту монтажа и возможность повторного применения.

Однако малый вес текстильных воздуховодов может обернуться и их недостатком. Так, некоторые участки воздуховода может «болтать» от потока воздуха. Кроме того, текстильные воздуховоды требуют более сложного и частого ухода и чистки. После выключения системы вентиляции текстильные воздуховоды обвисают, на них оседает пыль. При включении вентиляции воздуховоды резко выпрямляются, и пыль разлетается по помещению.

Наконец, текстильные воздуховоды, в первую очередь, это приточные воздуховоды. Без дополнительных мер в виде специального каркаса они не могут быть использованы в качестве вытяжных. Однако каркас нивелирует практически все преимущества текстильных воздуховодов. Именно поэтому в вытяжных системах широкого распространения они не получили.

Фасонные воздуховоды

Фасонные воздуховоды — отдельный вид воздуховодов нестандартных размеров и формы. Это могут быть прямоугольные и круглые изделия нестандартного сечения (например, диаметром 175 мм или сечением 525×320 мм).

Кроме того, к фасонным воздуховодам (синонимы — фасонные изделия или фасонные части воздуховодов) относят отводы, тройники, соединители, фланцы, переходы и другие изделия. Фасонные части воздуховодов могут быть как стандартных размеров, так и выполнены под заказ. Чаще всего такая потребность возникает при обходе ригелей, колонн и иных препятствий при монтаже воздуховодов на объекте.

Круглые и прямоугольные воздуховоды

Воздуховоды, применяемые в системах вентиляции и кондиционирования, могут быть круглого и прямоугольного сечения (см. рисунок 1).

Круглые воздуховоды — это спирально-навивные воздуховоды, материалом для изготовления которых служит, как правило, лента из оцинкованной стали. Они считаются более предпочтительными как с аэродинамической, так и с финансовой точки зрения, так как имеют меньшее сопротивление на единицу длины при той же площади сечения, проще в производстве, а потому и дешевле при закупке.

Следовательно, при проектировании систем вентиляции и кондиционирования предпочтение следует отдавать воздуховодам круглого сечения. Более подробно о сечениях круглых воздуховодов читайте отдельную статью.

Аэродинамический расчет систем вентиляции

Рисунок 1. Круглые (сверху) и прямоугольные (снизу) воздуховоды для систем вентиляции и кондиционирования.

Но если бы всё было так однозначно, воздуховоды прямоугольного сечения исчезли бы с рынка. Они выручают в двух основных случаях: при необходимости занизить один из габаритов воздуховода — ширину или, что чаще, высоту и при больших расходах воздуха. Впрочем, во втором случае всё сводится также к занижению одного из габаритов, ведь вместо воздуховода диаметром 1 метр куда более разумным выглядит применение воздуховода сечением 1200×800 или 1500×700 мм — они позволяют выиграть, соответственно, 200 и 300 миллиметров высоты в помещении.

Кстати, центральные воздуховоды — суть прямоугольные воздуховоды большого сечения. Термин не является официальным и часто означает магистральные воздуховоды в системах вентиляции. Они прокладываются по коридорам и предназначены для транспортировки больших расходов воздуха. Именно к центральным воздуховодам присоединяются отводы для подачи и вытяжки воздуха из помещений.

Выбирая сечение прямоугольных воздуховодов, следует помнить о рекомендации 3:1. Она заключается в том, что бóльшая сторона сечения воздуховода не должна превышать меньшую сторону более чем в три раза. Нарушение этой рекомендации ведёт к плохой аэродинамике воздуховода и увеличению потерь.

Кроме того, подбирая аналог круглому воздуховоду среди прямоугольных, следует руководствоваться не равенством площадей, а равенством эквивалентных диаметров. Так, эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:

DЭКВ.КР. = DКР.

В то же время эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:

DЭКВ.ПР. = 2·A·B/(A+B), где A и B — ширина и высота прямоугольного воздуховода.

Выбирая сечение прямоугольного воздуховода, следует подбирать такие A и B, чтобы эквивалентный диаметр этого воздуховода был равен диаметру круглого воздуховода, с которого выполняется переход на данный прямоугольный воздуховод.

Типы воздуховодов

Воздуховоды — это элементы системы, отвечающие за перенос отработанного и свежего воздуха. В состав входят основные трубы переменного сечения, отводы и полуотводы, а также разнообразные переходники. Различаются по материалу и форме сечения.

От типа воздуховода зависит область применения и специфика движения воздуха. Существует следующая классификация по материалу:

  1. Стальные — жёсткие воздуховоды с толстыми стенками.
  2. Алюминиевые — гибкие, с тонкими стенками.
  3. Пластиковые.
  4. Матерчатые.

По форме сечения подразделяются на круглые разного диаметра, квадратные и прямоугольные.

Воздуховоды из оцинкованной стали

Аэродинамический расчет систем вентиляции

В данном разделе каталога мы представляем вам широкий ассортимент воздуховодов из оцинкованной стали, которые являются важной частью современных систем вентиляции. Воздуховоды предназначены для обеспечения циркуляции воздуха в помещениях различного назначения – жилых, производственных и административно-бытовых

Несмотря на обилие альтернативных материалов, широко используемых в производстве воздуховодов для общеобменных систем вентиляции, оцинкованная сталь остается наиболее востребованной и широко применяемой ввиду своих превосходных эксплуатационных характеристик.

Преимущества оцинкованной стали

Оцинкованная сталь представляет собой прочный и долговечный материал, имеющий высокую устойчивость к коррозии, благодаря использованию в производстве специального защитного покрытия на основе цинка, которое препятствует возникновению окислительных реакций и, как следствие, ускоренному разрушению металла. Производство воздуховодов и фасонных частей из оцинкованной стали — это гарантия увеличенных сроков службы изделий, их устойчивости к коррозии, надежности и прочности.

Ассортимент продукции

Мы изготавливаем воздуховоды и фасонные части из оцинкованной стали круглого сечения (нормализированный ряд) и прямоугольного сечения (по размеру заказчика) согласно следующих нормативных документов:

— ВСН 355-86 «Проектирование и применение воздуховодов из унифицированных деталей — СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»

Диаметр воздуховода, ммТолщина стенки, ммПлощадь 1 м.п., м2Вес 1 м.п., кг
1000,50,3141,38
1250,50,3931,73
1400,50,4401,93
1600,50,5022,21
1800,50,5652,48
2000,50,6282,75
2250,50,7063,27
2500,50,7853,80
2800,50,8794,26
3150,50,9894,76
3550,51,1155,36
4000,71,2567,03
4500,71,4137,91
5000,71,5708,8
5600,71,7749,86
6300,71,97811,1
7100,72,25612,51
8000,72,51214,1
9001,02,82622,68
10001,03,1425,2
11251,03,5328,3
12501,03,9231,4

Спирально-навивные прямые участки круглых воздуховодов изготавливаются стандартной длинной 3 м.

Мы изготавливаем фасонные части круглого сечения:

  • 0тводы 90, 60, 45, 30 градусов
  • Ниппели
  • Переходы
  • Тройники
  • Врезки круглые
  • Врезки прямые
  • Заглушки

Воздуховоды круглого сечения имеют ряд преимуществ по отношению к воздуховодам прямоугольного сечения:

— лучшие аэродинамические характеристики

— менее металлоемки и соответственно имеют более низкую стоимость

— низкие, по сравнению с прямоугольными воздуховодами, затраты на перевозку и хранение.

— более технологичны при проведении работ по очистке внутренней поверхности от загрязнений.

— при монтаже систем воздуховодов и фасонных частей круглого сечения потребуется меньше затрат на комплектующие и теплоизоляцию.

Основные преимущества воздуховодов и фасонных частей прямоугольного сечения:

— можно подобрать оптимальную конфигурацию сечения системы, учитывая параметры перемещаемого воздуха и размеры пространства за подшивным потолком.

— воздуховоды прямоугольного сечения смотрятся более эстетично в сравнении с воздуховодами круглого сечения при так называемом «открытом исполнении» вентсистемы.

Прямоугольные воздуховоды и фасонные части из оцинкованной стали изготавливаются согласно требованиям:

Размер большей стороны сечения, ммТолщина металла, ммШинорейкаУголок
До 150 мм0,5Профиль 2065х18
От 150 до 400 мм0,5Профиль 2095х18
От 400 до 800 мм0,7Профиль 2095х18
Более 8001,0Профиль 30105х18

Прямые участки прямоугольных воздуховодов изготавливаются стандартной длинной 2м (если размер полупериметра воздуховодов не превышает 1200 мм) и 1,25 м.

В ассортименте нашего производства фасонные части прямоугольного сечения: отводы 90, 60, 45 градусов, переходы с круглого на прямоугольное сечение, переходы с прямоугольного на прямоугольное сечение, врезки, заглушки, тройники, эскизные изделия (адаптеры и воздухораспределители).

Расчет воздуховодов

Расчет воздуховодов или проектирование систем вентиляции

В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.

Расчет площади сечения воздуховодов

После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.

Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.

При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.

Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.

Площадь сечения воздуховода определяется по формуле:

— расчетная площадь сечения воздуховода, см²;

L — расход воздуха через воздуховод, м³/ч;

V — скорость воздуха в воздуховоде, м/с;

2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).

Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.

Фактическая площадь сечения воздуховода определяется по формуле:

S = π * D² / 400 — для круглых воздуховодов,

S = A * B / 100 — для прямоугольных воздуховодов, где

S — фактическая площадь сечения воздуховода, см²;

D — диаметр круглого воздуховода, мм;

A и B — ширина и высота прямоугольного воздуховода, мм.

Расчет сопротивления сети воздуховодов

После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.

Для расчета сопротивления участка сети используется формула:

Где R – удельные потери давления на трение на участках сети

L – длина участка воздуховода (8 м)

Еi – сумма коэффициентов местных потерь на участке воздуховода

V – скорость воздуха на участке воздуховода, (2,8 м/с)

Y – плотность воздуха (принимаем 1,2 кг/м3).

Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.

В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:

Разновидности труб для вентиляции

Основная задача вентиляционной системы – отвод загрязненного воздуха из помещения.

Эффективность и надежность всей системы зависит от выбора типа вентиляционной трубы.

  • минимальный диаметр трубы для вентиляции в частном доме должен составлять 15 см;
  • поверхности воздуховода должны быть устойчивы к коррозии;
  • вес конструкции влияет на сложность монтажных работ и обслуживание;
  • размер сечения воздуховода влияет на пропускную способность;
  • все элементы системы должны соответствовать требованиям пожарной безопасности.

Важным критерием выбора вентиляционной трубы является материал, из которого она изготавливается. Ниже рассмотрены самые популярные из них.

Пластиковые трубы

Пластиковые воздуховоды производятся из полипропилена, полиуретана и поливинилхлорида. Они отличаются большим разнообразием форм и размеров, наиболее популярными являются круглые и прямоугольные.

Данные типы труб получили широкое распространение благодаря целому ряду достоинств.

Преимущества круглых и прямоугольных пластиковых воздуховодов:

  • относительно небольшой вес, благодаря чему монтаж системы может осуществляться одним человеком, кроме того, не создается избыточная нагрузка на подвесные кухонные конструкции;
  • низкая уязвимость для воздействия влаги и химических веществ;
  • хорошая герметичность;
  • простота в обслуживании;
  • широкий диапазон рабочих температур;
  • низкий уровень шума при работе;
  • большой срок службы;
  • эстетичный вид;
  • экологичность;
  • устойчивость к появлению коррозии.

К недостаткам пластиковых труб можно отнести необходимость использовать дополнительные соединительные элементы при монтаже, а также то, что сам процесс установки достаточно сложный и требует специальной подготовки.

Гофрированные трубы

Самым дешевым вариантом для вентиляционной системы является гофрированная труба. Она состоит из металлических колец, обернутых ламинированной фольгой.

В изначальном состоянии кольца плотно прилегают друг к другу, но в процессе монтажа расстояние между ними способно увеличиваться за счет растягивания оболочки, а сама труба может вытягиваться и изгибаться под нужным углом.

Этими свойствами объясняется универсальность труб при монтаже: они легко устанавливаются в самых труднодоступных местах, а весь процесс не вызывает особой сложности.

Важно помнить! При неполном растяжении гофрированной трубы, а также сильном изгибе появляется дополнительное сопротивление потоку воздуха, что вызывает характерный шум.

Основные преимущества гофрированных воздуховодов:

  • срок службы — до 50 лет;
  • допустимое нагревание поверхностей — до 250 °С;
  • устойчивость к воздействию влаги и коррозии;
  • относительно легкий монтаж.

Металлические воздуховоды

Материалом для изготовления металлических вентиляционных труб служит оцинкованная или нержавеющая сталь. Они устойчивы к появлению ржавчины и имеют небольшой вес.

Такой тип воздуховода стоит выбирать для установки в помещениях с повышенным содержанием влаги и большими колебаниями температур.

Для монтажа металлических вентиляционных труб достаточно минимальных знаний и навыков.

Тканевые воздуховоды

Воздуховод такого типа представляет собой вентиляционный канал, сделанный из ткани, закрепленный с помощью специальных колец на потолке. За счет давления воздуха, проходящего внутри, конструкции придается форма трубы.

Материалом для изготовления служат полиамид, полиэстер или полиэфир. Тканевые воздуховоды встречаются достаточно редко и изготавливаются на заказ. Для проектировки потребуется опытный специалист.

Основные преимущества:

  • быстрый монтаж;
  • небольшой вес;
  • отсутствие конденсата;
  • низкий уровень шума;
  • устойчивость к коррозии;
  • удобство в обслуживании.

Помимо материала, при подборе и расчете воздуховода необходимо учитывать форму сечения. Большей популярностью пользуются круглые трубы, они оказывают меньшее сопротивление потоку проходящего воздуха.

Прямоугольные трубы не нарушают эстетичный вид помещения, их можно монтировать вплотную к стене.

Гофрированные и тканевые воздуховоды бывают только круглыми в сечении, пластиковые и металлические могут быть и круглой, и прямоугольной формы.

Размеры сечения рассчитываются по специальной формуле для каждого конкретного помещения. На практике часто встречаются диаметры 100-120 мм для круглых труб и размеры 55×110, 60×122 – для прямоугольных.

Классификация условных обозначений

Рабочий чертёж вентиляции включает буквенные/графические сокращения для основных элементов

Неважно, проектируется система проветривания для небольшой квартиры или огромного производственного помещения, везде используется одинаковая система знаков

Буквенные

Буквенные сокращения названий элементов прописаны в ГОСТ 21.602-2003:

  • П – приточная вентсистема с искусственным побуждением.
  • В – вытяжная с механической тягой.
  • У – завеса воздушная.
  • А – устройства отопления
  • ПЕ – приточка с естественным побуждением.
  • ВЕ – вытяжная вентсистема с естественной тягой.
  • ЛП – люки для замера основных характеристик воздушной массы.
  • ЛВ – технологические отверстия для чистки внутренней поверхности воздуховода.
  • Буквенное и числовое обозначение воздуховодов представлено в ГОСТ 21.205.
  • Отметки высот на аксонометрических схемах систем воздухообмена обозначаются цифрами, вписанными в прямоугольник.
  • Размер сечения воздуховода указывается в миллиметрах.
  • Уклон вентиляционных шахт, если такой предусмотрен проектом, обозначается знаком «Ð». Угол указывает направление уклона, а цифра после знака — его числовое значение.

Графические

Основной объём информации подаётся в графическом виде, это позволяет быстро, общедоступно и безошибочно описать вентсистему.

  • Вентиляторы, расположенные на крыше, обозначаются с помощью упрощённой штрихпунктирной линии. Если на кровле установлены сложные вентиляционные или охладительные установки, то рисуется отдельный план.
  • Если воздуховоды проложены многоярусно, то в пределах одного плана разрешается их условное обозначение один под другим.
  • Вся дополнительная информация: расчётная температура, кратность воздухообмена, наружные микроклиматические параметры указываются в таблице. Она может располагаться на общем чертеже или отдельной вкладке.

Таб. 1 Воздуховоды

Таблица содержит условные обозначения на планах, разрезах и схемах прямоугольных и круглых воздуховодов.

Аэродинамический расчет систем вентиляцииТаб. 2 Шахтовые воздуховоды

Таблица показывает обозначения воздуховодов, проходящих через шахты.

Таб. 3 Фитинги прямоугольного сечения

Элементы соединения различных системы вентилирования. Согласно требованиям, прописанным в нормативной документации, рекомендуется использовать для монтажных проектов.

Таб. 4 Фитинги круглого сечения

То же самое, что и в таблице 3, но с элементами круглого сечения.

Таб. 5 Вытяжные и приточные устройства

Решётки и воздухораспределительные устройства для общеобменной/локальной вентсистемы.

Таб. 6 Элементы систем вентиляции

Указаны прямой и обратный клапан, дроссель клапана, дверки для обслуживания калорифера, замены фильтров, клапан аварийный огнезадерживающий и ряд других элементов.

У каждого графического элемента есть свой код, он написан в крайнем левом столбце. Первые две цифры — номер таблицы, вторые две — порядковый номер по списку.

Эквивалентный диаметр

Эквивалентный диаметр определяется отдельно для каждого линейного участка нефтепровода, находящегося между НПС и узлами путевых подключений по данным таблицы фактической раскладки труб.

Схема воздуховодов. К примеру 2 А, В, В, Г, и — участки воздуховодов. JA 1, 2, 3 — выпуски.

Эквивалентный диаметр для этого воздуховода согласно табл. 19 — 2 составляет 740 мм.

Эквивалентный диаметр равен диаметру гипотетического трубопровода круглого сечения, для которого отношение площади 5 к смоченному периметру П то же, что и для данного трубопровода некруглого сечения.

Эквивалентный диаметр d9, соответствующий суммарному поперечному сечению каналов в зернистом слое, может быть определен следующим образом.

Эквивалентный диаметр d9 может быть выражен также через размер частиц, составляющих слой. Пусть в 1 л3, занимаемом слоем, имеется п частиц.

Эквивалентный диаметр равен диаметру гипотетического трубопровода круглого сечения, для которого отношение площади S к смоченному периметру П то же, что и для данного трубопровода некруглого сечения.

Эквивалентный диаметр da, соответствующий суммарному поперечному сечению каналов в зернистом слое, может быть определен следующим образом.

Эквивалентный диаметр ds может быть выражен также через размер-частиц, составляющих слой. Пусть в 1 м3, занимаемом слоем, имеется п частиц.

Эквивалентный диаметр капель изменялся от 0 57 до 1 65 см. Для капель диаметром от 0 8 до 1 3 см ( критерий Рейнольдса 1100 — 2100) коэффициенты массопередачи, рассчитанные по формуле Хандлоса.

Эквивалентный диаметр прорези ( при полном ее открытии) составляет.

Эквивалентный диаметр шкива rf, d K, где К — коэффициент, предназначенный по ISO для учета разного напряжения изгиба на шкивах передачи ( на основе гипотезы линейного суммирования усталостных повреждений), Л 1.14 — — О.

Расчетный внутренний эквивалентный диаметр, принятый нами, составляет D 590 259 мм.

Эквивалентные диаметры вентиляционных решеток приводятся в специальной литературе или определяются экспериментально. Значения Са и Rra, необходимые для определения и0, DO и Ад для характерных отверстий или решеток, содержатся в каталогах заводов-изготовителей.

Эквивалентный диаметр других конструктивных элементов ( нож, кожух), имеющих цилиндрическую форму, равен их наружному диаметру. В экранирующем кольце за эквивалентный диаметр принимается наружный диаметр трубы, из которой оно согнуто.

Рейтинг статей
Dymohod-msk.ru - Все про отопление
Добавить комментарий