Сравнение основных характеристик различных утеплителей: теплопроводности и плотности, гигроскопичности и толщины

Содержание

Обзор гигроскопичности теплоизоляции


Высокая гигроскопичность – это недостаток, который нужно устранять.

Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

Наименование материала Влагопоглощение, % от массы
Минвата 1,5
Пенопласт 3
ППУ 2
Пеноизол 18
Эковата 1

Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается

В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Виды и характеристики

Ассортимент минеральной ваты компании «ТехноНИКОЛЬ» довольно разнообразен и способен удовлетворить запросы даже самого требовательного потребителя.

«Роклайт»

Этот вид характеризуется небольшим весом и стандартными размерами минплит, а также низким содержанием формальдегида и фенола. Благодаря своей долговечности материал широко используется для утепления загородных домов и дач, позволяя долгое время не заботиться о ремонте теплоизоляции.

Плиты подходят для отделки вертикальных и наклонных поверхностей, могут быть использованы для утепления чердака и мансарды. Материал отличается отличной устойчивостью к вибрации и нейтрален к воздействию щелочей. Плиты не представляют интереса для грызунов и насекомых и не склонны к появлению грибка.

«Роклайт» отличается высоким термосопротивлением: слой минплиты толщиной 12 см эквивалентен толстой кирпичной стене шириной 70 см. Утеплитель не подвержен деформации и сминаемости, а в процессе заморозки-оттаивания не оседает и не разбухает.

«Техноблок»

Базальтовый материал со средней плотностью, используемый для монтажа на слоистые кладки и каркасные стены. Рекомендован к применению в качестве внутреннего слоя вентилируемого фасада в составе двухслойной теплоизоляции. Плотность материала составляет от 40 до 50 кг/м3, что гарантирует прекрасные звуко- и теплоизоляционные свойства плит этого вида.

«Техноруф»

Минеральная вата высокой плотности, предназначенная для утепления железобетонных перекрытий и металлической кровли. Иногда используется для утепления полов, не оборудованных бетонной стяжкой. Плиты имеют небольшой уклон, необходимый для отвода влаги к местам водосбора, и покрыты стеклохолстом.

«Техновент»


Безусадочная плита повышенной жёсткости, применяемая для утепления вентилируемых наружных систем, а также используемая в качестве промежуточного слоя в оштукатуренных фасадах.

«Технофлор»

Материал предназначен для утепления полов, подвергающихся серьёзным весовым и вибрационным нагрузкам. Незаменим при обустройстве спортивных залов, производственных цехов и складских помещений. Цементная стяжка при этом заливается поверх минеральных плит. Материал обладает низким влагопоглощением и часто используется в сочетании с системой «тёплый пол».

Минеральная вата, используемая для наружной тепло- и шумоизоляции кирпичных и бетонных стен под штукатурку.

«Техноакустик»

Отличительной чертой материала является хаотичное переплетение волокон, что наделяет его прекрасными звукоизоляционными характеристиками. Базальтовые плиты прекрасно справляются с воздушными, ударными и структурными шумами, поглощая звук и обеспечивая надёжную акустическую защиту помещения до 60 дБ. Материал имеет плотность от 38 до 45 кг/м3 и используется для внутренней отделки помещений.

«Теплоролл»

Рулонный материал, обладающий высокими звукоизоляционными свойствами и имеющий ширину от 50 до 120 см, толщину от 4 до 20 см и плотность 35 кг/м3. Используется при строительстве частных домов в качестве теплоизолянта скатной крыши и перекрытия.

«Техно Т»

Материал имеет узкую специализацию и применяется для термоизоляции технологического оборудования. Плиты имеют повышенную твёрдость и высокую термоустойчивость, позволяющую минвате свободно выдерживать температуру от минус 180 до плюс 750 градусов. Это позволяет изолировать газоходы, электрофильтры и другие инженерные системы.

Какие свойства Пеноплекса определяют высокий уровень потребительского спроса?

При выборе материала учитывается его уникально низкая теплопроводность, небольшой вес, несложный монтаж и продолжительный срок эксплуатации.

  • Экструдированная пенополистирольная теплоизоляция нового поколения отличается от пенопласта совершенной однородной структурой, стойкостью к нагрузкам на сжатие и другим неблагоприятным внешним воздействиям.
  • При всех своих достоинствах минеральная вата имеет жесткие ограничения по весу. Поэтому для утепления устройств, не имеющих достаточного запаса прочности, задействуются легкие материалы на пенополистирольной основе.

Недостатки Пеноплекс Фасад, купить который в нашей компании Вы можете в любое время года – нулевая паропроницаемость и достаточно низкая термостойкость, частично или полностью компенсируются применением в фасадных системах со щелевой вентиляцией и обустройством термостойких защитно-декоративных покрытий.

Что касается утепления подземных, в том числе и фундаментных конструкций, то в этом варианте влаго- и морозостойкий пенополистирол достойной альтернативы не имеет.

Прочность фундаментной облицовки достаточна для защиты гидроизоляции от повреждений сезонными подвижками пучинистых грунтов. Ассортимент пенополистирольных утеплителей включает в себя панели разных типоразмеров: толщиной от 30 до 100 мм. В большинстве центральных регионов повышенным спросом пользуются панели толщиной 50-60 мм. Купить Пеноплекс 50 мм в Москве с существенными скидками можно на акционных и сезонных распродажах строительных материалов.

Плотность и теплопроводность теплоизоляции в виде плит и сегментов


В таблице даны значения плотности и температурная зависимость теплопроводности теплоизоляции, формованной в виде плит, сегментов и др., а также их предельная рабочая температура.

Плотность теплоизоляции, теплопроводность и температура указаны для такой теплоизоляции, как: диатомовые сегменты, совелитовые сегменты и скорлупы, ньювелевые скорлупы, асбоцементные сегменты, вулканитовые плиты, вермикулитовые скорлупы, пенобетонные сегменты, пеностеклянные плиты, пробковые сегменты, торфяные сегменты, минераловатные сегменты, альфоль из гладких листов (сегменты), альфоль гофрированный (сегменты), шариковая изоляция засыпкой в сегменты, стерженьковая теплоизоляция засыпкой в сегменты (фарфоровые прутики диаметром 0,5 мм).

Наиболее легкая теплоизоляция — альфоль, по данным таблицы имеет плотность 200 кг/м 3 и максимальную рабочую температуру до 500°С. К высокотемпературной теплоизоляции (до 2000°С) относятся шариковая и стерженьковая теплоизоляция. Однако, такая теплоизоляция имеет высокую плотность и низкую теплопроводность, равную 0,23…0,39 Вт/(м·град). Теплопроводность теплоизоляции зависит от температуры. В таблице представлены формулы температурной зависимости теплопроводности теплоизоляции и ее предельная рабочая температура.

Примечание: для расчета коэффициента теплопроводности по зависимостям в таблице, необходимо температуру подставлять в градусах Цельсия.

Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Как выбрать материалы для теплоизоляции дома

Отметим, что универсального лучшего утеплителя не существует. Для каждого отдельного случая нужно подбирать соответствующий материал.

Чтобы разобраться, как выбрать теплоизоляцию для дома, рассмотрим ее виды:

Минеральная вата. Просто монтируется, хорошо утепляет. Но не выдерживает давления, не годится для влажных помещений. По типу сырья, из которого ее производят, бывает каменная (базальтовая), стеклянная и шлаковая. Утеплитель для дома на основе базальта совершенно не горюч, не колется. Стекловата имеет два основных плюса: она не горюча и очень дешева. Но работать с ней совсем не комфортно, так как материал колется, вызывает аллергии. Шлаковата годится только для чердаков, нежилых сооружений как неэкологичная.

  • Пеностекло. Выпускается в блоках, долговечное. Это новый и дорогой материал.
  • Пенопласт. Его популярность определяется низкой ценой. Не впитывает влагу, частично паропроницаем, не гниет, не плесневеет. Долговечен. Но имеет малую прочность. В пенопласте грызуны обожают строить гнезда. Оптимальна плотность 25 кг/м2.
  • Пенополистирол. Этот утеплитель производится из того же материала, что и пенопласт, но он современный и более прочный. Используется для стен, фундамента, плоских крыш. Одновременно обеспечивает влагоизоляцию. В настоящее время в рейтинге теплоизоляции пенополистирол является лидером.
  • Листовой пенополиуретан. По свойствам похож на пенополистирол, но является дышащим, легко впитывает воду.
  • Пена. Производится на основе пенополиуретана или пеноизола. Хороша для утепления стен снаружи. Покрывает поверхность полностью, без мостиков холода, благодаря чему стены после обработки обладают минимальной теплопроводностью. Но утепление таким способом обходится дорого – технология требует применения специального оборудования и квалифицированного персонала.
  • Вспененный пеноэтилен. Бывает ППЭ или НПЭ. Берите только ППЭ – он более долговечен. Применяется для утепления труб, стен внутри, полов. Есть варианты с отражающей пленкой из фольги.

Важные характеристики:

  • Теплопроводность. Показывает сколько тепла в ваттах потеряет материал. Чем меньше коэффициент, тем лучше. Среднее значение 0,038–0,046 Вт/мК.
  • Паропроницаемость. Способность материала дышать, пропуская пары влаги. Качество, требуемое для деревянных конструкций.
  • Усадка. Желательно, чтобы она была минимальна или отсутствовала. Иначе со временем под воздействием собственной массы теплоизоляция уменьшится в объеме с ухудшением свойств.
  • Гигроскопичность. Определяет способность материала поглощать водяной пар. Материалы с высокой гигроскопичностью менее эффективны, т.к. жидкость повышает теплопроводность. Также такие утеплители нельзя применять во влажных местах.
  • Температура эксплуатации. Правильно подобранный по этому параметру утеплитель будет служить качественно и долго. Например, в северных районах морозы могут достигать и -40, и -50 °С. Летом металлические крыши нагреваются до 80–90 °С.
  • Горючесть. Утеплители бывают горючими и негорючими. В помещениях лучше использовать негорючие или слабогорючие. Также негорючие утеплители нужно применять в пожароопасных местах.
  • Экологичность. Важна для применения в жилых помещениях. Экологически чистые материалы не выделяют вредных веществ.
  • Фирмы. Производителей качественной теплоизоляции достаточно много. Среди марок, доказавших свою эффективность, называют такие: Rockwool, Isoroc, Energoflex, Пеноплэкс, Актерм Норд, Технониколь, URSA, Hotrock, KNAUF, Isover, Экострой.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.


Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Показатель Бетоны, растворно-бетонные смеси
Железобетон Цементно-песчаный раствор Сложный раствор (цементно-известково-песчаный) Известково-песчаный раствор
плотность, кг/куб.м 2500 1800 1700 1600
коэффициент теплопроводности, Вт/(м•°С) 2,04 0,93 0,87 0,81
толщина стен, м 6,53 2,98 2,78 2,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Показатель Конструкционно-теплоизоляционные м-лы
Пемзобетон Керамзитобетон Полистиролбетон Пено- и газобетон (пено- и газосиликат) Кирпич глиняный Силикатный кирпич
плотность, кг/куб.м 800 800 600 400 1800 1800
коэффициент теплопроводности, Вт/(м•°С) 0,68 0,326 0,2 0,11 0,81 0,87
толщина стен, м 2,176 1,04 0,64 0,35 2,59 2,78

Таблица 3.2

Показатель Конструкционно-теплоизоляционные м-лы
Кирпич шлаковый Силикатный кирпич 11-типустотный Кирпич силикатный 14-типустотный Сосна (поперечное расположение волокон) Сосна (продольное расположение волокон) Фанера клеёная
плотность, кг/куб.м 1500 1500 1400 500 500 600
коэффициент теплопроводности, Вт/(м•°С) 0,7 0,81 0,76 0,18 0,35 0,18
толщина стен, м 2,24 2,59 2,43 0,58 1,12 0,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Показатель Теплоизоляционные м-лы
ППТ ПТ полистиролбетонные Маты минераловатные Плиты теплоизоляционные (ПТ) из минеральной ваты ДВП (ДСП) Пакля Листы гипсовые (сухая штукатурка)
плотность, кг/куб.м 35 300 1000 190 200 150 1050
коэффициент теплопро- водности, Вт/(м•°С) 0,39 0,1 0,29 0,045 0,07 0,192 1,088
толщина стен, м 0,12 0,32 0,928 0,14 0,224 0,224 1,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Неорганические варианты

Наряду с органическими ТИМ, широко применяются и изоляторы неорганического типа. В основе своей они имеют различные минеральные составляющие – стекло, шлак, горные породы, асбест и другие. В результате переработки этих элементов получаются различные теплоизоляторы. Лидеров в сфере неорганических утеплителей, конечно же, является минеральная вата.

Минеральная вата

Этот материал выпускается в двух разновидностях. Шлаковая минвата изготавливается из различных отходов черной и цветной металлургии. Каменная вата в своей основе имеет различные горные породы – известняк, базальт и прочее. Для связывания элементов применяются фенолы или карбамиды. Выпускается минеральная вата в виде рулонов или блоков.

К положительным свойствам этого изолятора можно причислить:

  • низкую плотность при отличных теплоизоляционных характеристиках;
  • нулевую горючесть;
  • высокий уровень шумопоглощения;
  • длительный строк эксплуатации.

К недостаткам этого материала нужно отнести высокую паропроницаемость. Поэтому укладывать ее нужно непременно в связке с качественным слоем пароизолятора.

Стекловата

Сырьем для стекловаты служит стекло и отходы стекольного производства. Благодаря своим толстым и длинным волокнам, стекловата более прочная и упругая, чем минеральная вата.

При нагревании стекловата не выделяет вредных веществ, обладает хорошими характеристиками шумопоглощения и теплопроводности, а также устойчива к воздействию агрессивных веществ. Выпускается в рулонах.

Керамическая вата

Окись алюминия, кремния или циркония подарили потребителю отличный теплоизоляционный материал, называемый керамоватой. Изготавливается она с помощью центрифуги. При высоких оборотах раздуваются исходные материалы, которым после остывания придают форму рулонов.

Керамическая вата не боится высоких температур, поэтому ее можно класть на крыши или же в помещения с большими температурными перепадами. Она не деформируется, не горит и не боится химически активных воздействий. Плотность этого ТИМ — около 350кг/м3 , теплопроводность – до 0,16 Вт/м на Кельвин.

Область применения минеральной ваты

Вата для утепления обладает незначительным коэффициентом проводимости тепла, поэтому она используется в разных строительных и промышленных областях

Важно подчеркнуть, что именно она является практически незаменимым теплоизолятором, если речь идет о работе с горячими ограждающими элементами, потому что имеет низкий уровень возгораемости

Кроме того, сейчас она активно используется в утеплении фасадов зданий, а также для создания внутренней изоляции в бетонных и железобетонных постройках. Минеральная вата применяется для обустройства систем водоотвода и отопления. В последние несколько лет из-за своей доступности для возведения небольших бань также начал использоваться данный материал. Сравнительная характеристика утеплителей

Теплопроводность минваты: важные критерии

Теплопроводность – это способность какого-то объекта или предмета пропускать тепловую энергию. Абсолютно все материалы, применяемые сегодня в строительстве (и минераловатный утеплитель не исключение), обладают определенной теплопроводностью, которую можно количественно оценить в виде коэффициента теплопроводности.

Специалисты в строительной отрасли оперируют термином «теплоизоляционный материал». Такое понятие характеризует изолятор, который наделен низкой теплоотдачей. Сюда можно отнести облицовочную плитку, стекловату, кирпич и тому подобные. Причем на уровень теплопроводности во многом оказывает влияние структурность материалов, а также их плотность и прочие характеристики.

Теплопроводность ваты может варьироваться в пределах 0,038-0,055 Вт/м*К. Если проводить сравнение с аналогами, данный материал считается наиболее оптимальным для строительных работ. Сегодня производство сэндвич-панелей происходит по определенной схеме:

Схема производства

» alt=»»> Легко понять, что теплопроводность достаточно просто рассчитать по объему и толщине материала. К примеру, стекловата имеет коэффициент теплоотдачи 0,044 Вт/м*К, поэтому толщина ее слоя должна быть не меньше 189 мм.


С этим читают