Вспоминаем физику: теплота

Определение

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как Q=ΔU+A{\displaystyle Q=\Delta U+A}. Здесь Q{\displaystyle Q} — количество теплоты, переданное системе, ΔU{\displaystyle \Delta U} — изменение внутренней энергии системы и A{\displaystyle A} — работа, совершённая системой. Однако корректное определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота — это энергия, переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного физического закона и превращается в тавтологическое определение количества теплоты.

Пусть в системе, состоящей из двух тел X{\displaystyle X} и Y{\displaystyle Y}, тело Y{\displaystyle Y} (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X{\displaystyle X}. Предположим, что тело X{\displaystyle X} также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь с Y{\displaystyle Y}. Количеством теплоты, переданным телу X{\displaystyle X} в некотором процессе, называется величина QX=−ΔUY{\displaystyle Q_{X}=-\Delta U_{Y}}, где ΔUY{\displaystyle \Delta U_{Y}} — изменение внутренней энергии тела Y{\displaystyle Y}. Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A=−ΔUx−ΔUy{\displaystyle A=-\Delta U_{x}-\Delta U_{y}}, где A{\displaystyle A} — макроскопическая работа, совершенная телом X{\displaystyle X}, что позволяет записать это соотношение в форме первого начала термодинамики:Q=A+ΔUx{\displaystyle Q=A+\Delta U_{x}}.

Виды энергии:
Механическая  Потенциальная Кинетическая
‹› Внутренняя
Электромагнитная  Электрическая Магнитная
Химическая
Ядерная
G{\displaystyle G} Гравитационная
∅{\displaystyle \emptyset } Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии

Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y{\displaystyle Y} и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо.

Откуда берется тепло в процессе горения?

Сам по себе процесс сгорания топлива — это химическая, окислительная реакция. Большинство видов топлива содержит большое количество углерода С, водорода H, серы S и других веществ. Во время горения атомы C, H, и S соединяется с атомами кислорода О2, в результате чего получается молекулы СО, СО2, Н2О, SO2. При этом происходит выделение большого количества тепловой энергии, которую люди научились использовать в своих целях.


Рис. 1. Виды топлива: уголь, торф, нефть, газ.

Основной вклад в выделение тепла дает углерод C. Второй по количеству тепла вклад вносит водород H.

Рис. 2. Атомы углерода вступают в реакцию с атомами кислорода.

Эффективность нагревателей

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

В этом видео вы узнаете, как рассчитать количество теплоты:

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Теория теплоёмкости

Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Существующие теории теплоёмкости не охватывают всех особенностей поведения теплоёмкости различных твёрдых тел. В первую очередь это относится к аномальным пикам на кривых теплоёмкости, а также росту в высокотемпературной области удельной теплоёмкости над уровнем 3R нормальной (колебательной) составляющей. Возникновение некоторых из перечисленных аномалий детально исследовано и имеет своё физическое объяснение. Это в первую очередь относится к лямбда-пикам, связанным с ферромагнитными и ориентационными переходами, а также с переходами от упорядоченных к неупорядоченным структурам. Аномальные отклонения над уровнем 3R кривой теплоёмкости графита и алмаза в высокотемпературной области (Т > 3000 K) обусловлены процессами термодеструкции с переходом в плавление. Аномальные пики на кривых теплоёмкости германия и гафния объясняются процессами в кристаллической решетке, контролируемыми больцмановским фактором exp(-E/RT).

Что такое удельная теплота сгорания?

Удельная теплота сгорания q — это физическая величина равная количеству тепла, выделяющегося при полном сгорания 1 кг топлива.

Формула удельной теплоты сгорания выглядит так:

$$q={Q \over m}$$

где:

Q — количество тепла, выделившееся в процессе горения топлива, Дж;

m — масса топлива, кг.

Единицей измерения q в интернациональной системе единиц СИ является Дж/кг.

$$={Дж \over кг}$$

Для обозначения больших величин q часто используются внесистемные единицы энергии: килоджоули (кДж), мегаджоули (МДж) и гигаджоули (ГДж).


Значения q для разных веществ определяют экспериментально.

Зная q, можно вычислить количество тепла Q, которое получится в результате сжигания топлива массой m:

$$Q={q * m}$$

«Плавление и кристаллизация. Удельная теплота плавления»

Плавление

Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру –10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления

Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной

В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

Кристаллизация

Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.

Удельная теплота плавления

Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.

Удельная теплота плавления обозначается буквой λ. Единица удельной теплоты плавления — = 1 Дж/кг.

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*105 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*105 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Чтобы вычислить количество теплоты Q, необходимое для плавления вещества массой m, взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm.

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».

Следующая тема: «Тепловые машины. ДВС. Удельная теплота сгорания топлива».

Теплота сгорания .

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч­ное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).


Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:

Q = qm.

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Плавление кристаллических тел

У кристаллических тел атомы – кирпичики материи – упорядочены в жесткую структуру, которую называют кристаллической решеткой. Чтобы расплавить такое тело, необходимо разрушить решетку, разорвать прочные связи между атомами. Для этого необходима энергия.

Рис. 1. Структура кристаллического тела и жидкости.

Из законов термодинамики известно, что для изменения внутренней энергии необходимо либо совершить работу, либо подвести тепло. Нас интересует второй случай. Когда к кристаллическому телу подводят тепло, его температура растет. Атомы в решетке начинают колебаться чаще и сильнее, внутренняя энергия увеличивается. По достижении необходимой температуры (которую называют температурой плавления) всё подводимое тепло будет уходить на ее поддержание и на разрушение кристаллической решетки твердого вещества.

Рис. 2. Изменение внутренней энергии тела.

Шаги

Часть 1 из 2: Освойте основы

1

Ознакомьтесь с величинами, которые используются для расчета удельной теплоемкости

Очень важно знать величины, которые используются для расчета удельной теплоемкости. Вы должны знать, как выглядит символ каждой величины, и понимать, что он означает

Далее приведены величины, которые обычно используются в выражении для расчета удельной теплоемкости вещества: Дельта, или символ «Δ», подразумевает изменение величины.

Масса образца обозначается буквой «m». Количество теплоты обозначается буквой «Q». Единица измерения количества теплоты — «Дж», или Джоуль. «T» — это температура вещества. Удельная теплоемкость обозначается буквой «Cp».

2

Освойте выражение для определения удельной теплоемкости. Ознакомившись с величинами, которые используются для вычисления удельной теплоемкости, вы должны выучить уравнение для определения удельной теплоемкости вещества. Формула имеет вид: Cp = Q/mΔT. Вы можете оперировать этой формулой, если хотите узнать изменение количества теплоты вместо удельной теплоемкости. Вот как это будет выглядеть:

Часть 2 из 2: Вычислите удельную теплоемкость

  1. 1

    Изучите формулу. Сначала вам нужно изучить выражение для того, чтобы понять, что вам нужно сделать, чтобы найти удельную теплоемкость. Давайте рассмотрим следующую задачу: Определите удельную теплоемкость 350 г неизвестного вещества, если при сообщении ему 34 700 дж теплоты его температура поднялась с 22 до 173 ºC без фазовых переходов.

  2. 2

    Запишите известные и неизвестные факторы. Разобравшись с задачей, вы можете записать все известные и неизвестные переменные, чтобы лучше понять, с чем вы имеете дело. Вот как это делается:

    • m = 350 г
    • Q = 34 700 Дж
    • ΔT = 173 ºC — 22 ºC = 151 ºC
    • Cp = неизвестно
  3. 3

    Подставьте неизвестные факторы в уравнение. Известны все значения за исключением «Cpc», поэтому необходимо подставить в исходное уравнение все остальные факторы и найти «Cp». Делать это нужно так:

    • Исходное уравнение: Cp = Q/mΔT
    • c = 34 700 Дж/(350 г x 151 ºC)
  4. 4

    Найдите ответ. Теперь, после того как вы подставили известные величины в выражение, вам осталось выполнить несколько простейших арифметических действий, чтобы узнать ответ. Удельная теплоемкость — окончательный ответ — составляет 0,65657521286 Дж/(г x ºC).

    • Cp = 34,700 Дж/(350 г x 151 ºC)
    • Cp = 34,700 Дж/(52850 г x ºC)
    • Cp = 0,65657521286 Дж/(г x ºC)
  • Металл нагревается быстрее воды из-за низкой удельной теплоемкости.
  • При нахождении удельной теплоемкости сокращайте единицы измерения тогда, когда это возможно.
  • Удельную теплоемкость многих материалов можно найти в интернете для проверки вашего ответа.
  • Иногда для изучения процессе теплопередачи в процессе физических или химических превращений может использоваться калориметр.
  • Изменение температуры при прочих равных условиях значительнее для материалов с низкой удельной теплоемкостью.
  • Системная единица СИ (Международная система единиц измерения) удельной теплоемкости — джоуль на градус Цельсия на грамм. В странах с британской системой мер она измеряется в калориях на градус Фаренгейта на фунт.
  • Изучите формулу расчета удельной теплоемкости пищевых продуктов Cp = 4,180 x w + 1,711 x p + 1,928 x f + 1,547 x c + 0,908 x a — это уравнение для нахождения удельной теплоемкости, где «w» — процентное содержание воды в продукте, «p» — процентное содержание белков, «f» — процентное содержание жиров, «c» — процентное содержание углеводов и «a» — процентное содержание неорганических компонентов. Уравнение учитывает массовую долю (x) всех твердых веществ, которые составляют пищу. Расчет удельной теплоемкости приведен в кДж/(кг х K).

Роль теплоты и ее использование

Схема работы паротурбинной электростанции

Схема холодильного цикла

Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты.

Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии.

Теплота — непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов — от кирпичей и посуды до автомобилей и электронных устройств.

Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин — устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели.

Одной из наиболее известных тепловых машин является паровая турбина, в которой реализуется часть цикла Ранкина, используемого на современных электростанциях. Упрощенная схема этого цикла представлена на рисунке. Рабочую жидкость — воду — превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты, не использованной в цикле Ранкина. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Все процессы в цикле Ранкина иллюстрируют описанные выше начала термодинамики. В частности, согласно второму началу, часть энергии, потребляемой электростанцией, должно рассеиваться в окружающей среде в виде теплоты. Оказывается, что таким образом теряется примерно 68% энергии, первоначально содержавшейся в ископаемом топливе. Заметного повышения КПД электростанции можно было бы достигнуть, лишь повысив температуру парового котла (которая лимитируется жаропрочностью материалов) или понизив температуру среды, куда уходит тепло, т.е. атмосферы.

Другой термодинамический цикл, имеющий большое значение в нашей повседневной жизни, — это парокомпрессорный холодильный цикл Ранкина, схема которого представлена на рисунке. В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника — фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

Холодильный цикл, представленный на рисунке, можно использовать и в тепловом насосе. Такие тепловые насосы летом отдают тепло горячему атмосферному воздуху и кондиционируют помещение, а зимой, наоборот, отбирают тепло у холодного воздуха и обогревают помещение.

Важным источником теплоты для таких целей, как производство электроэнергии и транспортные перевозки, служат ядерные реакции. В 1905 А.Эйнштейн показал, что масса и энергия связаны соотношением E = mc2, т.е. могут переходить друг в друга. Скорость света c очень велика: 300 тыс. км/с. Это означает, что даже малое количество вещества может дать огромное количество энергии. Так, из 1 кг делящегося вещества (например, урана) теоретически можно получить энергию, которую за 1000 суток непрерывной работы дает электростанция мощностью 1 МВт.

Неравенство Клаузиуса. Энтропия

Основная статья: Неравенство Клаузиуса

Предположим, что рассматриваемое тело может обмениваться теплотой лишь с N{\displaystyle N} бесконечными тепловыми резервуарами, внутренняя энергия которых столь велика, что при рассматриваемом процессе температура каждого остаётся строго постоянной. Предположим, что над телом был совершён произвольный круговой процесс, то есть по окончании процесса оно находится абсолютно в том же состоянии, что и в начале. Пусть при этом за весь процесс оно заимствовало из i-го резервуара, находящегося при температуре Ti{\displaystyle T_{i}}, количество теплоты Qi{\displaystyle Q_{i}}. Тогда верно следующее неравенство Клаузиуса:

∘∑i=1NQiTi⩽{\displaystyle \circ \sum _{i=1}^{N}{\frac {Q_{i}}{T_{i}}}\leqslant 0.}

Здесь ∘{\displaystyle \circ } обозначает круговой процесс. В общем случае теплообмена со средой переменной температуры неравенство принимает вид

∮⁡δQ(T)T⩽{\displaystyle \oint {\frac {\delta Q(T)}{T}}\leqslant 0.}

Здесь δQ(T){\displaystyle \delta Q(T)} — количество теплоты, переданное участком среды с (постоянной) температурой T{\displaystyle T}. Это неравенство применимо для любого процесса, совершаемого над телом. В частном случае квазистатического процесса оно переходит в равенство. Математически это означает, что для квазистатических процессов можно ввести функцию состояния, называемую энтропией, для которой

S=∫δQ(T)T,{\displaystyle S=\int {\frac {\delta Q(T)}{T}},}
dS=δQT.{\displaystyle dS={\frac {\delta Q}{T}}.}

Здесь T{\displaystyle T} — это абсолютная температура внешнего теплового резервуара. В этом смысле 1T{\displaystyle {\frac {1}{T}}} является интегрирующим множителем для количества теплоты, умножением на который получается полный дифференциал функции состояния.

Для неквазистатических процессов такое определение энтропии не работает. Например, при адиабатическом расширении газа в пустоту

∫δQ(T)T=,{\displaystyle \int {\frac {\delta Q(T)}{T}}=0,}

однако энтропия при этом возрастает, в чём легко убедиться, переведя систему в начальное состояние квазистатически и воспользовавшись неравенством Клаузиуса. Кроме того, энтропия (в указанном смысле) не определена для неравновесных состояний системы, хотя во многих случаях систему можно считать локально равновесной и обладающей некоторым распределением энтропии.

Плавление аморфных веществ .

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.


Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Удельная теплоёмкость

удельная теплоёмкость, удельная теплоёмкость 8 классУде́льная теплоёмкость — отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К). Иногда используются и внесистемные единицы: калория/(кг·К) и т.д.

Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.

); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.

Формула расчёта удельной теплоёмкости: где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества. Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда — более или менее сильно — зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :

  • 1 Значения удельной теплоёмкости некоторых веществ
  • 2 См. также
  • 3 Примечания
  • 4 Литература
  • 5 Ссылки

Значения удельной теплоёмкости некоторых веществ

воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,903
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
молибден твёрдое тело 0,250
сталь твёрдое тело 0,462
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
нефтяные масла жидкость 1,67 — 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373 К (100 °C) газ 2,020
вода жидкость 4,187
лёд твёрдое тело 2,060
сусло пивное жидкость 3,927
асфальт 0,92
полнотелый кирпич 0,84
силикатный кирпич 1,00
бетон 0,88
кронглас (стекло) 0,67
флинт (стекло) 0,503
оконное стекло 0,84
гранит 0,790
талькохлорит 0,98
гипс 1,09
мрамор, слюда 0,880
песок 0,835
сталь 0,47
почва 0,80
древесина 1,7

См. также

  • Теплоёмкость
  • Объёмная теплоёмкость
  • Молярная теплоёмкость
  • Скрытая теплота
  • Теплоёмкость идеального газа
  • Удельная теплота парообразования и конденсации
  • Удельная теплота плавления

Примечания

  1. Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке.

    Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, т.е.

    строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст).

  2. Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.

Ссылки

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
  • E. М. Лифшиц Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.

Удельная теплоемкость алюминия

Удельная теплоемкость алюминия существенно зависит от температуры и при комнатной температуре составляет величину около 904 Дж/(кг·град), что значительно выше удельной (массовой) теплоемкости других распространенных металлов, например таких, как медь и железо.

Ниже приведена сравнительная таблица значений удельной теплоемкости этих металлов. Значения теплоемкости в таблице находятся в интервале температуры от -223 до 927°С.

По данным таблицы видно, что величина удельной теплоемкости алюминия значительно выше значения этого свойства у меди и железа, поэтому такое свойство алюминия, как возможность хорошо накапливать тепло, широко применяется в промышленности и теплотехнике, делая этот металл незаменимым.

Уде́льная теплоёмкость

— это отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу. .

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К) . Иногда используются и внесистемные единицы: калория/(кг·°C) и т. д.

Удельная теплоёмкость обычно обозначается буквами c или С , часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении ( CP

) и при постоянном объёме (CV ), вообще говоря, различны.


С этим читают