Анод

Две причины запаха сероводорода из воды бойлера

Одна причина запаха

Питательной средой для некоторых разновидностей сульфатредуцирующих бактерий служит ил, который содержит органические соединения. Такие бактерии можно найти в природе, например, в отложениях ила на дне болот, озер. Или в искусственных сооружениях — в септике канализации, например. Или на дне колодца, или накопительного бака с водой, если там скапливаются органические загрязнения.


В баке бойлера со временем из воды оседает и накапливается слой ила, который может стать средой обитания сульфатредуцирующих бактерий.

Увеличьте температуру воды в бойлере до максимума, выше 70 оС и попользуйтесь горячей водой дня три. Микроорганизмы при такой температуре должны погибнуть, а накопленный в иле сероводород за это время уйдет с водой из бака. Если запах сероводорода исчез, то скорее всего причина запаха в деятельности бактерий, которые живут в слое ила.

Другая причина запаха

Другие разновидности бактерий живут в воде. Для жизнедеятельности, таким бактериям, необходим молекулярный водород. Некоторые из них живут в природных источниках термальной воды при температуре +110 оС.

В баке водонагревателя молекулярный водород особенно интенсивно выделяется, если протекторная защита от коррозии работает в режиме «перезащиты» (подробнее о «перезащите» читайте в статье выше).

Если в баке водонагревателя вода содержит достаточно большое количество сульфатов, и протекторная защита работает в режиме «перезащита», с интенсивным выделением водорода, то  создаются условия для активного размножения сульфатредуцирующих бактерий в воде.

Определить причину не сложно – выньте протекторный анод из бака и включите водонагреватель в работу без анода. Если вода перестала отдавать тухлыми яйцами – причина найдена.

Типы анодов

Защита магниевым анодом — это электрохимический метод. Он состоит в том, что к защищаемой емкости подсоединяется анод. Одновременно поверхность металла делается эквипотенциальной и на её площадях проходит исключительно катодный процесс. Вызывающий коррозию анодный процесс, переходит на магниевый анод.

Магниевый

Магниевый анод для бойлера, выполняется из обычного стержня с нанесенной резьбой. На нем устроен металлический валик из серебристого металла. В ходе использования, магниевый анод подвержен медленному растворению, до полного исчезновения.

В это время прекращается процесс катодной защиты, и стальная емкость опять подвергается коррозии. Производители популярных марок водонагревателей рекомендуют выполнять замену анода каждые 1.5 года, а в особых ситуациях, каждые 15 месяцев.

Анод из магния. Источник фото: santeh.ks.ua

Аноды выпускаются с разными размерами по длине и диаметрам поперечного сечения

На это нужно обращать внимание при приобретении нового защитного электрода, для того чтобы он мог подойти для нужной геометрии бака

В последнее время выпускаются водонагревательные аппараты, в которых устанавливают два анода. В напольных нагревательных аппаратах, они размещаются сверху, а в настенных — снизу.

Титановый

Современные водонагревательные установки оснащаются титановым анодом, который служит особой антикоррозионной защитой поверхностей внутреннего бака. Срок службы, такого электрода зависит от качества воды и составляет до 7 лет.

Титановый анод выпускается с индивидуальным ИП и может использоваться с баками до 300 л. Для стабильной защиты на протяжении 24 часов он подключается непосредственно в розетку, при этом потребление электроэнергии на собственные нужды анода очень низкое.

Постоянный ток, необходимый для защитной функции устанавливается внешним регулятором. Титановый стержень функционирует, как питающий и измерительный электрод.

Старый и новый титановый

Когда на непродолжительное время выключается подвод тока. Анод измеряет разность потенциалов, которая рабочей программой сравнивается с изначально заданным потенциалом.

По полученным результатам устанавливается защитная сила тока. При эксплуатации, такой анод не разрушается и поэтому не нуждается в замене на протяжении всего периода эксплуатации бойлера.

Алюминиевый

Это еще один вариант защитного электрода, покрытый алюминиевым напылением. Он также выполнен в виде обыкновенного прутка с резьбой.

При подогреве воды, расширяется металл, сплав корпуса удлиняется, утрачивая свои характеристики. На поверхности бака образуются микротрещинки. После чего кислород, находящийся в воде начинает окислять металл, вызывая необратимые коррозионные процессы.

Стальной корпус и электрический нагревательный элемент создают гальваническую пару, при этом корпус становится анодом. Для того, чтобы он не разрушался под воздействием воды, изготовители разместили около ТЭНа сплав, в состав которого входит алюминий.

Он берет на себя роль анода — в результате чего весь агрессивный кислород расходуется на его окисление, а емкость остается целой. Алюминиевый анод не дает окисляться элементам бойлера, но он имеет весьма утонченную конструкцию и легко повреждается от механического удара.

1 Особенности анода

Такая деталь, как магниевый анод для водонагревателей, визуально напоминает широкий стержень и устанавливается посередине внутренней емкости системы. Его крепят вблизи к элементу нагревания. Это необходимо для того, чтобы при ремонте или диагностике можно было извлечь и электрод и анод вместе. Однако существуют и такие конструкции, где эти детали размещены порознь. Можно выделить две функции того, как работает магниевый анод в водонагревателе:

  • Обеспечивает защиту оборудования и деталей от коррозии.
  • Делает структуру накипи рыхлой, что позволяет устранить ее, не прилагая значительных усилий.


Для того чтобы защитить внутреннюю поверхность котлового механизма, на нее часто наносят специализированную эмаль. Она увеличивает срок службы водонагревателя и благотворно влияет на его работу. Бойлеры, обработанные эмалью, имеют такие достоинства:

  • Надежно противостоят распаду, даже если в воде отмечается высокое содержание азота.
  • Минимизируют появление коррозии.
  • Обладают устойчивостью к сильным скачкам температурного режима.

Виды диодов

Все диодные элементы можно разделить на 2 большие группы: неполупроводниковые и полупроводниковые. Первая группа состоит из 2-х видов: вакуумных (кенотронов) и наполненных газом (стабилитронов с тлеющим или коронным разрядом, игнитронов и газотронов).

Вакуумные диоды – лампы с двумя электродами, один из них выполнен в виде нити накаливания. При открытии электроны движутся от плюса к минусу. При изменении направления движения тока прибор почти полностью закрывается, движение электронов прекращается.

Из газонаполненных диодных элементов на данный момент используются лишь газотроны с дуговым разрядом (стабилитроны), наполненные инертным газом и паром ртути и оснащенные оксидными термокатодами. Основная особенность – способность выдать высокое напряжение на выходе и работать с токами в несколько десятков ампер.

Полупроводниковые диоды – это емкости небольшого размера, из которых удален воздух.

Внутри размещаются 2 электрода:

  • плюсовой (с электропроводностью p);
  • минусовой (с электропроводностью n).

Коррозия водонагревательного элемента

Почему корпус нагревательного элемента подвергается коррозии и разрушается? Дело в том, что тэн в бойлере снабжен магниевым анодом.

Без него, внутри титана образуется гальваническая пара:

бак — ТЭН

А с магниевым анодом:

ТЭН – анод

Через этот анод все блуждающие токи стекают на ”землю”, постепенно унося с собой какую-то часть корпуса анода. Когда он будет полностью разрушен, эти токи начинают стекать уже по корпусу тэна.

Наросты на ТЭНе образуются не равномерно. Из-за этого разные участки его медной оболочки приобретают разные коэффициенты расширения. В итоге создается поверхностное натяжение, которое разрывает оболочку тэна.

Во многих сервисных центрах, при капитальной поломке бойлера, вам даже могут отказать в гарантии, если не будет чека о своевременной замене анода.

В конечном итоге коррозия становится сквозной и перегорает рабочий элемент.

Кстати, при целом аноде, вода из бака может быть немного с запахом. Когда запах исчезнет, это может служить неким признаком разъедания электрода.

Современные модели имеют специальные датчики контролирующие состояние анода.

При своевременной замене анода и обязательной чистке, тэн у вас действительно прослужит в несколько раз дольше. Заземление корпуса также увеличивает срок службы тэна минимум в два раза.

Однако многие, почему-то упускают из вида этот момент. Между тем, при интенсивной работе, чистку бойлера рекомендуется проводить хотя бы один раз в год.

количество потребленной воды

средняя температура нагрева этой воды, ее химический состав

как воткнута вилка в розетку (куда приходит фаза, а куда ноль)

есть ли заземление или нет

Почему горячая вода из бойлера пахнет сероводородом

Через какое-то время вода из бойлера может начать жутко вонять сероводородом. Причина — в размножении бактерий в баке водонагревателя. Особенно часто это происходит, если вода в водопровод подается из местной скважины или колодца. Вода из городского водопровода обычно специально готовится, сильно обеззараживается, хлорируется, и с ней такие случаи бывают редко.

Большие количества газа сероводорода (H2S) выделяются и накапливаются в результате жизнедеятельности сульфатредуцирующих (сульфатвосстанавливающих) бактерий в воде. 

Сульфатредуцирующие бактерии используют органические вещества (CH2O) или водород (H) в качестве донора электрона и сульфат (SO4) в качестве акцептора электрона при получении энергии

2CH2O + SO42-  + 2H+ => 2CO2 + H2S + 2H2O

Проще говоря, существует две разновидности сульфатредуцирующих бактерий. Обеим разновидностям для жизнедеятельности необходимы сульфаты — соединения серы, а также водород.  Но одна разновидность бактерий добывает водород из органических веществ в иле. Другие бактерии используют молекулярный водород, который находят в воде.

Важно — развитие сульфатредуцирующих бактерий происходит в анаэробных условиях, при отсутствии свободного кислорода в воде. Сульфа́ты — соли серной кислоты H2SO4 ,например, сульфат калия K2SO4 , гидросульфат натрия NaHSO4 

Сульфаты широко распространены в природе, образуя целую группу минералов. Многие сульфаты растворимы в воде и входят в состав природной воды

Сульфа́ты — соли серной кислоты H2SO4 ,например, сульфат калия K2SO4 , гидросульфат натрия NaHSO4 . Сульфаты широко распространены в природе, образуя целую группу минералов. Многие сульфаты растворимы в воде и входят в состав природной воды.

С помощью каких инструментов можно определить «плюс» и «минус»


В некоторых квартирах постсоветского периода, в новостройках, чаще всего, использовали алюминиевый двух-трех жильный кабель. В случае, если от счетчика идет такой кабель, а заменить его проблематично, нужно определить, где «плюс», а где «минус». Провод имеет белую оплетку и никак не подписан.

Для распознавания «плюса» и «минуса» понадобятся инструменты.  Самым простым является отвертка-индикатор. Перед тем, как приступить к работе, необходимо обесточить сеть, развести провода в разные стороны и зачистить изоляцию. После этого включить напряжение и аккуратно дотронуться отверткой-индикатором до оголенного провода, руками прикасаться нельзя. На проводе, где загорится индикатор – это фаза («плюс»). На другом проводнике индикатор гореть не будет — это ноль («минус» или нейтраль).

Нахождение плюса с помощью отвертки-индикатора

Важно! Инструменты для измерения напряжения должны иметь изолированные ручки. Если кабель имеет 3 жилы, и необходимо распознать, где фаза, где ноль, а где «земля»

Для этого понадобиться специальный измерительный прибор — мультиметр. Это устройство имеет регулятор, устанавливающий диапазон, табло и 2 щупальца. Для установления назначения проводников необходимо:

Если кабель имеет 3 жилы, и необходимо распознать, где фаза, где ноль, а где «земля». Для этого понадобиться специальный измерительный прибор — мультиметр. Это устройство имеет регулятор, устанавливающий диапазон, табло и 2 щупальца. Для установления назначения проводников необходимо:

  1. Диапазон на регуляторе устанавливается более 220В.
  2. Одним щупом касаются фазы, а другим — второго проводника для определения.
  3. Если табло показывает 220, то ноль найден, если на табло показывает немного ниже 220, то это – заземление.

Мультиметр

Существуют другие альтернативные варианты определения наличия напряжения, но это опасно для жизни. Рекомендуется пользоваться только исправными инструментами и не проводить эксперименты, которые могут нанести вред здоровью человека.

Для определения «+» и «-» не обязательно иметь специальное образование, но следует знать принципы маркировки проводов и соблюдать правила безопасности.

Как определить подлежит ли деталь замене

В процессе эксплуатации водонагревателя можно зрительно и на слух установить, что наступило время замены установленного магниевого анода.

Нужно следить за своевременной заменой. Источник фото: domikelectrica.ru

Это можно выполнить по таким показателям:

  1. Водонагреватель начал продолжительнее греться.
  2. Устройство почасту выключается и включается снова.
  3. Выходящая из смесителя нагретая вода сделалась мутной и имеет неприятный запах.
  4. В процессе нагрева водонагревателя хорошо слышен шум.

В случае, когда существует хотя бы один из отмеченных выше показателей, необходимо заменять магниевый анод. Тем более, что большинство из перечисленных признаков, говорят о том, что ТЭН покрыт накипью и ему также требуется очистка. Произвести ее можно вместе со сменой анода.

Кратко — зачем нужен магниевый стержень

Детали бойлера изготовлены из разнородных металлов:

  • резервуар – сталь нержавеющая либо «черная» с эмалированным покрытием;
  • трубка ТЭНа с нихромовой спиралью внутри – медь.

Схема накопительной емкости в разрезе

При нагреве воды указанные металлы подвергаются воздействию электрохимической коррозии, возникающей по вине растворенного кислорода и солей. В первую очередь разрушается ТЭН, затем – стенки бака.

Купить и заменить негодный электронагреватель относительно просто. Другое дело – прохудившаяся емкость, которую нельзя отремонтировать либо поменять, бойлер идет в утиль целиком.

Для продления срока службы металлических деталей в состав бытового накопителя включен жертвенный анод, сделанный из более активного металла, — магния (реже – титана). Используется принцип действия катодной защиты – коррозия сначала «съедает» стержень, а после принимается за ТЭН и стенки резервуара

Вот почему важно поймать момент и поставить новый анод взамен разрушенного

Для предохранения железного бака от ржавчины используется 2 варианта катодной защиты – магниевый либо титановый активный анод

Заполнение водой и проверка работоспособности

Вешаете эл.титан на место. Подсоединяете шланги и открыв холодную воду, начинаете наполнять бак. Кран горячей воды также должен быть открыт для выхода воздуха.

При этом следите, чтобы нигде не было протечек. Как только пойдет вода из ”горячего” крана – бойлер наполнен. Сразу закрывать кран не нужно, пусть вся ”жижа” прольется и окончательно промоет бак и трубы.

Только когда пойдет чистая вода, перекрываете смеситель.

После этого, водонагреватель должен хотя бы полчаса-час выстоять, чтобы ушел конденсат со всех поверхностей и была уверенность в отсутствии протечек.

Затем можно подавать напряжение, включив титан в розетку. Чтобы проверить работу термостата, ручкой регулятора принудительно выкручиваете регулировку до максимума и минимума.

При этом должна срабатывать лампочка включения-отключения бойлера.


Если бойлер работает тихо, не издавая никаких звуков, и вам непонятно грет он или нет, можно проверить потребление эл.энергии по счетчику.

На максимальной мощности нагрева обогревателя, счетчик будет крутиться или моргать существенно быстрее. А это значит, что тэны работают как надо.

Так что самостоятельный ремонт способен вам сэкономить существенную сумму денег, главное не совершить некоторых ошибок.

Магниевый анод: принцип работы

Теперь рассмотрим подробней вопрос, почему и зачем анод в водонагревателе настолько необходим и каков основной принцип его работы.

Подавляющее большинство внутренних баков бойлеров производится из низкоуглеродистой стали. Магний, обладающий валентностью II – металл более активный, чем железо с валентностью III, поэтому он связывает кислород, образующийся в воде при ее нагревании, предотвращая кислородную коррозию бака и металлической оболочки ТЭНа. Это так называемая протекторная защита. Отсюда проистекает второе название магниевого анода – анод-протектор.

Дополнительная задача анода – предотвращение образования накипи на ТЭНе. При нагревании воды накипь образуется в результате выпавших в осадок солей тяжелых металлов. За счет повышенной активности магния они вступают в реакцию с ним, а не с железом, из которого сделаны стенки бака. Поэтому резко уменьшается образование нерастворимых солей карбоната кальция, а малорастворимые соли магния преобразуются в магниевую соль угольной кислоты. Плотная, как камень, накипь, делается рыхлой, отделяется от стенок бака и ТЭНа и хлопьями осаждается на дно. Мягкую накипь легко удалить во время чистки прибора.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис

2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.


С этим читают